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Abstract— We describe an efficient analysis of planar

circuits which makes use of a state-of-the-art integral
equation approach in conjunction with a new bandwidth
reduction algorithm.
The MPIE is formulated by considering the recently in-
troduced closed form expressions for the Green’s func-
tions; standard roof-top basis functions are used during
the discretization of the Method of Moments. The ma-
trix sparseness introduced by a thresholding procedure
has proven sufficient for the application of an effective
bandwidth reduction algorithm which yields, in all the
considered cases, a significant reduction of computer ef-
fort (maximum speed-ups of about 18 times).

I. INTRODUCTION

Efficient modeling of printed circuits and antennas is
crucial in current microwave engineering [1], [2] and has
stimulated several contributions: in particular a mixed-
potential integral equation (MPIE) was proposed by
Mosig [3], [4] and, more recently, the latter formulation
was enhanced by the evaluation of suitable closed-form
spatial-domain Green’s functions [5]. Cousiderable ef-
forts arc currently made to improve the cfficiency and
accuracy of these numerical methods, e.g. the inclu-
sion of 3D unknown currents; efficient choices for the
Sommerfeld integration paths [6]; the enhancement of
the complex-image method [7] for multilevel stratified
microstrip lines [8], [9]. The above mentioned contribu-
tions arc mainly in the direction of reducing the compu-
tation time required for filling the impedance matrix.

Another direction of investigation has been to con-
sider a basis function expansion such as to improve ma-
trix sparscness [10], [11] by using wavclets. However,
their introduction requires significant changes in the the-
oretical formulation of the problem and in the code im-
plementation, hence preventing their wide application.

We present a different approach, which allows us to
obtain sparsc matrices (via an appropriate threshold-
ing of its elements) with banded structure, by suitably
renumbering standard type of basis functions. This ap-
proach is particularly appealing since it can be employed
with minimal, if any, change in the code structure; more-
over the relative performances are substantially superior
to other previous approaches.

The paper is structured as follows: Section 2 describes
the main features of the MPIE approach with closed-
form Green’s functions, while Section 3 focusses on its

numerical properties. Section 4 describes the strategy
to improve performances via the renumbering algorithm.
Section 5 presents some results, and finally conclusions
are drawn.

II. THE MPIE APPROACH WITH CLOSED-FORM
(GREEN’S FUNCTIONS

The MPIE is obtained by using Leontovich boundary
condition, after suitable selections of the vector poten-
tial A, of the Lorentz Gauge, and by introducing the
Green’s functions GA and GY for the surface electric
current density Jg and for the surface electric charge
density gg. In this way, the following MPIE equation is
recovered:

nx E®(r) =nx (ZsgJs — jw / GzA-JSdS’+
Js
(1)
V/Gq-quS')
Js

In the (1), E® denotes the excitation electric field, and
Z; and Js denote the surface impedance and electric
current density respectively. As initially proposed for
single-layer structures, [7], and furtherly extended to
multi-layer problems, [12], [13], [14], closed-form spatial
domain Green’s functions can be analytically evaluated.

The equation (1) is discretized and solved using the
Galerkin’s version of MoM, together with roof-top basis
functions, so that a linear system

Zyz Ly Iy | | Vy
is generated. The entries Z;; in the impedance matrix

represent the tangential electric field generated by the
j-th basis function and weighted by the i-th test one.

ITI. NUMERICAL PROPERTIES OF THE LINEAR
SYSTEM

The accuracy of the implemented method is demon-
strated in Fig. 1, where numerical results are compared
with experimental data for a double stub [15]. As ap-
parent from this figure, the theoretical amplitude and
phase are both in good accordance with experimental
data.
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A significant amount of the numerical effort of the
above problem is in the solution of the linear system (2).
It can be performed using a standard dense Gaussian
solver, as the system matrix is generally dense. A more
detailed analysis on real cases, anyway, opens different
perspectives. In Fig. 2,3 the patterns of the system ma-
trix for the two circuits reported in the respective figures
are shown. Different gray levels correspond to different
magnitudes (white is zero, black is the maximun mag-
nitude in the matrix). A valuc smaller than 1079 is
zeroed. It can be easily noted that several entries can
be neglected. It is apparent that, even using standard
roof-top basis functions, only a few entrics retain an
amount of information significant enough to solve the
problem with adequate accuracy. Therefore, it makes
sense to ask the following question:  how is the numer-
ical accuracy offected when all entries smaller than o
certain threshold value, v, are neglected?. We include
in Fig. 2,3 a table providing some clues to answer this
question. For several values of v, the system solution
and the circuit scattering parameters are evaluated and
compared with the values computed considering all the
entries in the system matrix. This way, an extimation
of the errors due to the thresholding performed on the
matrix entries is feasible. It can be observed that for
values of vy smaller than 107° - 2,4, (where 2,4, is the
maximum entry in the matrix), numerical errors are still
comparable with experimental ones. This observation is
also confirmed on several other test circuits.

On the basis of this consideration, it can be concluded
that in many cases the system matrix can be reduced to
a significantly sparse one without affecting the numeri-
cal accuracy. Its percentage of non-zero entries (we call
it sparsity) depends on v;. When a circuit must be mod-
eled in a certain frequency range, the matrix sparsity can
be preserved at every frequency, if the appropriate v; is
evaluated at the maximum frequency value.

IV. SPEEDING-UP THE SYSTEM SOLUTION

As the system (2) can be counsidered sparse, a first
and trivial speed-up can be achieved by using a sparse
solver, such as, for instance, an iterative biconjugate
gradient method (BCG). Luckily, as demounstrated in
[16], in several electromagnetic (EM) numerical prob-
lems, an alternative strategy can be quite effective. It
consists in performing a suitable transformation on the
system matrix, so that it is transformed into a banded
one with reduced bandwidth; thercafter banded solvers
can be used with very high performance. In fact, the so-
lution time depends quadratically on the matrix band-
width, and the cffect of an cffective bandwidth reduction
is considerable.

In this paper, a new method, called Wonderful Band-
width Reduction Algorithm (WBRA), is used to per-
form bandwidth reduction, superior to previous com-
mercial and public-domain ones. It is developed in or-
der to achieve high effectiveness on the typical patterns
of sparse matrices encountered in EM numerical prob-

lems. Since it is described in [17], the interested reader
is addressed to this reference for further details.

Therefore, the proposed strategy can be summarized
in the following steps

o Verify if a suitable v; exists and select it

e Set to zero all the matrix entries smaller than v,

o Transform with WBRA the sparse linear system

into a banded linear system
o Use a banded solver to solve the system

V. RESULTS

In this section we compare the performance of the
MPIE/MoM implementation with a standard dense
Gaussian (DG) algorithm used to solve the linear sys-
tem (2), with respect to using the BCG sparse one or the
WBRA together with a banded LU direct solver (BN).
The DG, the BCG and the banded solver are available
in LAPACK public domain library.

The first example is the 2-port circuit of Fig. 2. For
this circuit, studied in the range 2.5-3.5 GHz, the rela-
tive diclectric constant is 2.6, and the cell dimension is 3
mimn (squared cells are considered). The system matrix
has a size of 220, and after using v; = 1073, it becomes
a matrix with a sparsity of around 73%, and bandwidth
208. After using WBRA (which execution takes around
0.5 s) the final bandwidth of the transformed matrix is
72. In Tab. I, the time to cvaluate a dispersion curve
with 100 frequency-points is given for the three imple-
mentations (DG, BCG and WBRA+BN). Times are in
scconds, and refer to an IBM 250 T.

Method Total Time
GJ 6200
BCG 1832
WBRA + BN 1243
Table I

The second example is the 4-port branch coupler of Fig.
3. For this circuit, studied in the range 2.5-3.5 GHz, the
relative dielectric constant is 2.6, and the cell dimen-
sion is 3 mm (squared cells are considered). The system
matrix has a size of 401, and after using v, = 1072, it
becomes a matrix with a sparsity of around 81%, and
bandwidth 310. After using WBRA (which execution
takes around 2 s) the final bandwidth of the transformed
matrix is 82. In Tab. II, the time to evaluate a disper-
sion curve with 100 frequency-points is given for the
three implementations (DG, BCG and WBRA+BN).
Times arc in scconds, and refer to an IBM 250 T.

Method Total Time
GJ 33860
BCG 4497
WBRA+ BN 1835
Table 11

As proved by the presented results, the use of a thresh-
olding on matrix entries, coupled with a transformation
of the same so that the bandwidth is reduced and a
banded solver can be used with high efficiency, enhances
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meaningfully the package performance (5 times for the
2-port circuit, 18 times for the 4-port one). It is also
superior to the use of iterative sparse solvers. The ad-
vantage of WBRA+BN strategy is increasingly evident
for higher numbers of external ports of the circuit and
for higher circuit complexity.

VI. CONCLUSION

In this paper a bandwidth reduction algorithm has
been used in conjunction with an integral equation ap-
proach for the modeling of planar circuits. Based on a
MPIE and using closed-form Green’s functions, it en-
surcs very high performance and noticeable accuracy,
due to the exploitation of the numerical properties of
the problem. In particular, by efficiently transforming
the matrix of the lincar system attained with the MoM,
and using suitable system solvers, speed-ups of up to
18 times have been observed with respect to standard
statc-of-the-art implementations of the MPIE/MoM ap-
proach.
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Fig. 1. Scattering parameters of matching section(a) in magni-

tude (b) and in phase (c). Physical dimensions: ¢, = 9.9, d
= 10 mil,w1 = 9.2 mil, we = 23 mil, [, = 30 mil, ls = 50.6
mil

0-7803-4471-5/98/$10.00 (c) 1998 IEEE



N V
A AN
‘ 30 mm ‘ 15mm 0 30 mm >

=3 = 9

Vi S Solution B Error Scattering

Error Parameter Error
107 | 1464 % 0.00 % 0.02 9 0.55 %
10° | 35.97 % 0.02 % 0.05 9 0.96 %
10° | 72.94 % 5.04 % 0.04 9 0.98 %
10* | 85.71 % 5.61 % 0.07 9 1.95 %
10° | 91.09 % 62.23 % 0.27 9 7.59 %
102 | 92.70 % 212.64 % 3.17 9 22.58 %

Fig. 2. Double stub: schematic, pattern of the impedance matrix
and thresholding effect on the solution’s accuracy. S is the

percentage of non-zero elements
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Vit S Solution B Error Scattering
Error Parameter
Error
107 | 10.84 % 0.00 % 0.01 % 0.10 %
10° | 35.41% 0.07 %) 0.04 % 0.24 %
10° | 80.74 % 4.92 % 0.12 % 3.02 %
10* | 93.61% 8.14 % 0.50 % 3.83 %
10% | 95.73 % 16.59 % 0.83 9 10.09 %
10° | 96.55 % 143.03 % 3.719 34.31 %
Fig. 3. Branch coupler: schematic, pattern of the impedance

matrix and thresholding effect on the solution’s accuracy. S
is the percentage of non-zero elements
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